ES/embryoid body system. Embryo suspensions were plated in 1% methylcellulose containing 10% FCS (Summit), VEGF (5 ng ml\(^{-1}\)), insulin-like growth factor-1 (IGF-1; 50 ng ml\(^{-1}\)), leukemia inhibitory factor (LIF; 1 ng ml\(^{-1}\)), interleukin-6 (IL-6; 5 ng ml\(^{-1}\)) and 25% D4T endothelial cell conditioned medium. Colonies were grown in either 10 mm dishes or 24-well or 96-well plates in low oxygen incubators (5% oxygen). Haemangioblast colonies were cultured on fibronectin-coated glass coverslips in IMDM containing 10% FCS (Summit), VEGF (5 ng ml\(^{-1}\)). Haemangioblast colonies were grown in either 10 mm free hybridoma medium (Gibco/BRL), 15% plasma-derived serum (Antech), c-kit ligand (Flk-1 antibody followed by incubation with streptavidin-PE-Cy5 (BD Pharmingen) and medium containing VEGF (5 ng ml\(^{-1}\)).

Immunofluorescence for CD31 and SMA expression

Neomycin and hygromycin gene detection

Expression analyses of haemangioblast/blast colonies, the non-adherent and adherent cell populations from expanded haemangioblast colonies, and sorted cell populations were performed using a modified global cdna amplification protocol. Total RNA from pooled fragments of dissected neural plates stage embryos was harvested using the Absolutely RNA MicroPrep kit (Stratagene) and reverse transcribed with Omniscript RT (Qiagen) to generate cDNA. Primers used for PCR amplification of brachyury, Flk-1 and b-actin were as previously reported. The following additional primers were also used: Gata1 (forward) 5'-GATTGGCCCTTGGGCAAG-3', Gata1 (reverse) 5'-ACCTGATGAGCTTTAAGTGACCGG-3', Cer1 (forward) 5'-CCAGGCTTGAAGATCTGCAGAAGA-3', Cer1 (reverse) 5'-GCTCCTCAGCTGCACTGACCA-3', Tctctc-3', Mospi (forward) 5'-GCTTCAAGGAGCAAGACCATG-3', Mospi (reverse) 5'-CAGAGGGTGGTAAATGTGCAG-3'.

Fluorescence-activated cell sorting

Embryos at a concentration of 1 × 10\(^{5}\) ml\(^{-1}\) were incubated with a biotinylated anti-Flk-1 antibody followed by incubation with streptavidin-PE-Cy5 (BD Pharmingen) and sorted on a MoFlo high-speed cell sorter (Cytometry). For the limiting dilution analysis (Fig. 3f), GFP Flk-1+, GFP Flk-1− and GFP Flk-1− cells were sorted directly into haemangioblast conditions in 96-well plates. Out of three experiments, one was performed using duplicate wells containing 3,000, 5,700 or 10,000 cells each, and two experiments were performed using only one well for each condition.

Immunofluorescence for CD31 and SMA expression

Haemangioblast colonies were cultured on fibronectin-coated glass coverslips in IMDM medium containing VEGF (5 ng ml\(^{-1}\)) and basic fibroblast growth factor (bFGF; 10 ng ml\(^{-1}\)) for 5–8 days. The coverslips were fixed with 4% paraformaldehyde for 15 min at room temperature, incubated with biotinylated anti-mouse CD31 (BD Pharmingen) and anti-mouse SMA (NeoMarkers) in 1× PBS buffer for 1 h, washed five times (10 min washes) and incubated with streptavidin-Cy3 (Sigma) and anti-mouse-FITC (Biosource International) for 1 h. After five washes the coverslips were inverted onto a drop of 4,6-diamidino-2-phenylindole (DAPI, Vector Laboratories, Inc.) on slides and viewed under an inverted fluorescence microscope.

Received 2 August; accepted 20 October 2004; doi:10.1038/nature03122.

The role of the barren stalk1 gene in the architecture of maize

Andrea Gallavotti\(^1\), Qiong Zhao\(^2\), Junko Kyozuka\(^2\), Robert B. Meeley\(^2\), Matthew K. Ritter\(^3\), *, John F. Doebley\(^2\), *, Enrico Pé\(^2\) & Robert J. Schmidt\(^1\)

1Department of Science Biomolecules and Biotechnology, Università degli Studi di Milano, 20133 Milan, Italy
2Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
3Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8657, Japan

1) for 5–8 days. The coverslips were fixed with 4% paraformaldehyde for 15 min at room temperature, incubated with biotinylated anti-mouse CD31 (BD Pharmingen) and anti-mouse SMA (NeoMarkers) in 1× PBS buffer for 1 h, washed five times (10 min washes) and incubated with streptavidin-Cy3 (Sigma) and anti-mouse-FITC (Biosource International) for 1 h. After five washes the coverslips were inverted onto a drop of 4,6-diamidino-2-phenylindole (DAPI, Vector Laboratories, Inc.) on slides and viewed under an inverted fluorescence microscope.

Acknowledgements We thank P. Gadue, S. Iriom and S. Kattman for critical reading of this manuscript. We also thank the Mount Sinai Flow Cytometry Shared Research Facility for sorting assistance. This work was supported by NIH grants (G.K. and J.P.). H.I.E. is supported by grants from a Sonderforschungsbereich (SFB) and the IKZ Ulm.

Competing interests statement

The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to G.K. (gordon.keller@msum.edu) or J.P. (james_palis@urmc.rochester.edu).

The architecture of higher plants is established through the activity of lateral meristems—small groups of stem cells formed during vegetative and reproductive development. Lateral meristems generate branches and inflorescence structures, which develop in a general form of a plant\(^3\), and are largely responsible for the evolution of different plant architectures\(^4\). Here, we report the isolation of the barren stalk1 gene, which encodes a non-canonical basic helix–loop–helix protein required for the
initiation of all aerial lateral meristems in maize. *barren stalk1* represents one of the earliest genes involved in the patterning of maize inflorescences, and, together with the *teosinte branched1* gene, it regulates vegetative lateral meristem development. The architecture of maize has been a major target of selection for early agriculturalists and modern farmers, because it influences harvesting, breeding strategies and mechanization. By sampling nucleotide diversity in the *barren stalk1* region, we show that two haplotypes entered the maize gene pool from its wild progenitor, *teosinte*, and that only one was incorporated throughout modern inbreds, suggesting that *barren stalk1* was selected for agronomic purposes.

barren stalk1 (*ba1*) is a spontaneous recessive mutation identified in 1928 (*ba1-ref*) from material collected by R. A. Emerson in South America. Homozygous *ba1* mutant plants are unable to produce vegetative branches (tillers), female inflorescences (ears) and a normal apical male inflorescence, the tassel. The tassel of *ba1* mutants is unbranched, shortened and predominantly sterile owing to the often complete lack of spikelets, the short branches bearing florets that represent the basic unit of grass inflorescences (Fig. 1a–d, l). Double mutant analysis with *teosinte branched1* (*tb1*), an enhanced tillering mutant, and *in situ* hybridization on immature tassels with *knotted1*, a marker for meristematic cells, showed that lateral meristems in the aerial portion of *ba1* mutant plants fail to initiate during both vegetative and reproductive development, whereas the shoot apical meristem and inflorescence meristem, which define the main axis of aerial growth, develop normally.

We isolated the *ba1* gene through a candidate gene approach, using the recently isolated *LAX* gene of rice to probe an immature tassel complementary DNA library and a bacterial artificial chromosome (BAC) library. The *lax* mutant fails to initiate lateral meristems during the reproductive phase, resulting in an almost completely unbranched inflorescence with few or no spikelets. Vegetative lateral meristems, however, are unaffected. Even though *ba1*, unlike *lax*, affects both vegetative and reproductive development, the map positions of *ba1* and *lax* are in syntenic regions of chromosomes 3L and 1L, respectively, suggesting that both mutants

![Image](https://example.com/image.png)

Figure 1 Effects of *ba1* mutations on maize development. **a**, *ba1-ref* tassel. **b**, Wild-type tassel. **c**, **d**, Axillary buds during vegetative and reproductive development in wild-type (left) and *ba1*-ref mutant plants (right). Upon removal of leaves, axillary buds (arrowheads) are only visible in wild-type plants. **e**, *ba1-mum1* mutant tassel. Spikelets are borne on the central rachis. **f**, Schematic representation of the acropetal development of maize inflorescences and of the lateral meristems involved. IM, inflorescence meristem; SPM, spikelet-pair meristem; SM, spikelet meristem; UFM/LFM, upper/lower floral meristem. **g**–**k**, SEM of immature tassels. **g**, Wild type showing branch meristems (arrowheads). **h**, *ba1-mum1*. **i**, *ba1-mum1* (later stage); several meristems are arrested in development (arrowheads). **j**, *ba1-mum1* spikelet pairs. **k**, *ba1-mum3* spikelets; white arrowhead points to an undeveloped spikelet meristem. **l**, Wild-type tassel spikelet. Each floret is composed of lemma (L), palea (P) and three stamens (ST). **m**, *ba1-mum1* mature spikelet. A sterile structure is produced in place of reproductive organs. **n**, *ba1-mum3* spikelet. The upper floret is missing; the lower floret has a reduced number of stamens. Scale bars, 200 μm.
could carry defects in orthologous genes. Library screens led us to identify a single gene. We subsequently cloned its corresponding genomic region in the \textit{bal-ref} mutant and identified a 6.5-kilobase (kb) insertion in the proximal regulatory region at \textsim 306 base pairs (bp) from the predicted start codon (Fig. 2a). This insertion is a \textit{Helitron}; that is, a recently discovered class of transposable elements5. As the \textit{bal-ref} allele is the only known allele in mutant collections, we searched for mutations in the candidate gene by screening a \textit{Mutator}-tagged population (Trait Utility System Corn, Pioneer Hi-Bred International) and by sequencing the gene from a \textit{bal-like} mutant found to be segregating in an ethylmethanesulphonate-induced M2 family. The identification of three insertions and a point mutation in the same gene, each showing a \textit{bal-like} tassel phenotype (Fig. 1a, c) and suppression of ear and tiller formation, confirmed that we had isolated the \textit{bal} gene. These alleles were named \textit{ba1-mum1}, \textit{ba1-mum2}, \textit{ba1-mum3} and \textit{ba1-IL}, respectively (Fig. 2a).

The \textit{ba1} gene is intron-less, as is \textit{LAX}2, and the cDNA sequence presents an open reading frame (ORF) of 660 bp. The comparison between \textit{BA1} and \textit{LAX} putative amino acid sequences reveals an overall identity of 62\% (Fig. 2b). The \textit{ba1} gene is predicted to encode a small protein of 219 amino acids with a basic helix-loop-helix (bHLH) domain, which is the defining feature of the bHLH family of transcription factors. This domain is 100\% conserved when compared to \textit{LAX} (Fig. 2b,c). The bHLH domain consists of an amino-terminal basic region involved in DNA binding, and a carboxy-terminal HLH region, which leads to the formation of homo- or heterodimers8–9. bHLH transcription factors are important components of eukaryotic transcription networks in many biological pathways9–10. Although this family of transcription factors represents the second largest in the \textit{Arabidopsis} genome, only a few members involved in developmental processes have been characterized in detail9–10. The predicted \textit{BA1} bHLH domain lacks the glutamic acid at position 9 in the basic region that was demonstrated in non-plant bHLH proteins to be necessary for DNA binding to the canonical E-box site (Fig. 2c)8–10. Although no significant similarities are observed outside of the bHLH domain, \textit{BA1} as well as the recently characterized \textit{INDEHISCENT} (IND) protein in \textit{Arabidopsis}10 belong to a subgroup of proteins that share an atypical bHLH domain that is suggested to bind DNA through recognition of a different motif or together with a partner protein8–10 (Fig. 2c).

The earliest events in tassel development11,12 include the formation on the flanks of the main inflorescence meristem of a few branch meristems that develop into the long branches of mature tassels, and of several rows of spikelet-pair meristems along the sides of the branches and the central spike. Spikelet-pair meristems give rise to two spikelet meristems, each of which initiates two floral meristems: the upper and lower floral meristems (Fig. 1fg). This specific sequence of branching events by intermediate lateral meristems eventually leads to the formation of two paired spikelets (pedicellate and sessile spikelets), each consisting of a pair of glumes (modified leaves) enclosing a short branch terminating in an upper and a lower floret (Fig. 1i) composed of lemma, palea, lodicules and stamens11–13.

Homozygous \textit{ba1-mum1} and \textit{ba1-mum3} plants manifest a weaker phenotype than the \textit{bal-ref} mutant, typically having a central spike of normal length with spikelets forming along the upper portion, but still lacking basal branches (Fig. 1e). \textit{ba1-mum2} and \textit{ba1-IL} tassels are, however, as severely affected in branching and spikelet formation as seen in the \textit{bal-ref} tassels. The spikelets that form in the upper portion of \textit{ba1-mum1} and \textit{ba1-mum3} tassels manifest a wide range of defects. Scanning electron microscopy (SEM) on immature \textit{ba1-mum1} and \textit{ba1-mum3} tassels reveals that the development of all lateral meristems is affected. No branch meristems are formed, and several spikelet-pair meristems remain undeveloped, originate single spikelets or divide abnormally (Fig. 1h–k). Some spikelet meristems appear smaller and produce tubular structures in place of glumes (Fig. 1i–k). Once matured, mutant spikelets are either empty or bear a varying number of floral organs in just one of the two florets or in both florets (Fig. 1m, n). These defects indicate that a functional \textit{ba1} gene is required early in inflorescence development for branch meristem and spikelet-pair meristem initiation, and later for the correct establishment of all subsequent lateral meristems, either having a role in their maintenance or possibly regulating organ formation during spikelet and floret development. As meristem size correlates with the number of organs formed12, we favour the view that \textit{ba1} is necessary for establishing the appropriate population of meristematic cells, which is in turn required for the correct partitioning of these cells during all branching events, as already suggested for \textit{barren inflorescence2}, a mutant similarly impaired in lateral meristem formation13.

Expression analysis via \textit{in situ} hybridizations during vegetative and reproductive development supports these deduced functions of \textit{BA1} (Fig. 3). Sections of young seedlings show a defined signal on the adaxial (facing towards the stem) side of initiating auxillary meristems, whereas no expression is observed in the shoot apical meristem (Fig. 3a). After the transition to the reproductive phase, \textit{ba1} is first detected in a narrow arc of cells immediately above the region where branch meristems and spikelet-pair meristems will initiate (Fig. 3b, c). As these branch meristems and spikelet-pair meristems become visible, the expression persists in a position adjacent to the initiating meristems (Fig. 3b, c) and is later localized in the dividing spikelet-pair meristems, in the region between the two developing spikelet meristems (Fig. 3d). During floral meristem formation, we detected the transcript in a region of cells between the upper floral meristem and lower floral meristem, and in a more diffuse pattern in the upper floral meristem (Fig. 3e). As spikelets develop, \textit{ba1} expression remains localized to the sides and to the base of both spikelets (Fig. 3f). In sections through ear spikelets,
when the reproductive organs are initiating, ba1 expression is observed on the adaxial side of the lower floret but not in developing floral organ primordia (Fig. 3a). A comparatively faint signal is present in developing anthers of young tassel spikelets (Fig. 3b). No expression is seen in sections of ba1-ref tassels, but a shortened transcript is weakly detectable through northern hybridizations (data not shown), suggesting that the smaller transcript is unstable.

In every branching event, from the formation of branch meristems to the formation of floral meristems, ba1 retains a clear and specific expression pattern, localized in the regions where this branching occurs. These observations, together with the mutant phenotypes, suggest that a conserved mechanism in maize regulates the formation of lateral meristems during both vegetative and reproductive development. The reiterative adaxialized expression domain observed during the initiation of all lateral meristems indicates that these ba1-expressing cells have a specific identity and might be involved in transmitting an endogenous signal to regulate downstream genes controlling lateral meristem initiation and outgrowth. Several mutants affected in lateral meristem formation have been related to failures in polar auxin transport or signalling. Polarized gradients of auxin were recently proposed as a common module for several developmental processes16,17, raising the possibility that ba1 could be involved in an auxin signalling pathway.

The morphology of modern maize is derived from that of its wild progenitor teosinte through a domestication process that is still poorly understood4,18–20. A quantitative trait locus (QTL) analysis of maize and teosinte identified five major chromosomal regions that explain most of their morphological differences4,19, essentially accounting for lateral branch development and for the positioning and morphology of female inflorescences19,21. So far, only the teosinte branched1 gene, a TCP transcription factor, has been clearly implicated in the domestication of maize architecture by its identity with the QTL on the long arm of chromosome 1 (refs 4, 19–22). Genetic evidence supports the existence of an epistatic interaction between another major QTL on the long arm of chromosome 3 (QTL 3L) and tb1 (refs 19, 23). QTL 3L was proposed as an upstream regulator of tb1 (ref. 23). TB1 is a repressor of lateral meristem outgrowth and the teosinte branched1 mutant is characterized by a severe loss of apical dominance, which results in an unrestrained outgrowth of axillary buds along the main stem1. Accordingly, expression of tb1 is first detected during the formation of vegetative axillary meristems11. barren stalk1 maps to the genomic region encompassing QTL 3L, and the ba1 mutation is epistatic to tb1, suppressing tiller formation in double mutant plants, suggesting that ba1 acts upstream of tb1 in the pathway of vegetative lateral meristem formation21. In order to clarify the relationship between these two genes, we quantitatively analysed tb1 expression in ba1 mutant shoots and developing tassels, and ba1 expression in tb1 mutant seedlings (Fig. 4a). The reduction in tb1 transcript levels in both ba1-ref seedling and tassel samples confirms that ba1 activity is required for normal levels of tb1 expression. Furthermore, the normal level of expression of ba1 in tb1 mutant seedlings, together with the ba1 expression pattern adjacent to initiating meristems, suggest that ba1 is required for axillary meristem formation but not for axillary shoot elongation.

We then investigated whether selection acted on ba1 during maize domestication or improvement. One expectation for a selected gene is a change in the pattern of nucleotide diversity, as the favourable allele(s) is brought to higher frequency by human selection20,22,24. We analysed sequence diversity at ba1 in 14 diverse maize inbreds, 16 diverse maize landraces, and 14–17 teosinte samples (Zea mays parviglumis and Z. mays mexicana) for three distinct regions of ba1 (Fig. 4b, c). Two standard selection tests (Tajima’s D25 and the Hudson–Kreitman–Aguadé (HKA) test26) were consistent with neutral evolution at ba1 in maize landraces, but the HKA test showed a highly significant deviation from neutrality for inbreds (P < 0.0002). Moreover, for ba1, maize inbreds possess only 3% of the diversity found in teosinte (Fig. 4b), a value that is much smaller that the 30% figure for starch pathway genes27, which were targets of human selection, and nearly as small as that for the domestication gene tb1 (ref. 22). The low diversity among inbreds is a function of their possessing a single haplotype, as shown by a survey of 86 diverse maize inbreds (Supplementary Data). Thus, although the standard tests provide no evidence that ba1 was under selection during domestication, they suggest that it was under selection during maize improvement, reducing modern maize inbreds to a single basic haplotype (haplotype I, see below).

Although the standard tests of selection during domestication for ba1 were not significant, other aspects of the sequence data are atypical of genes that passed through the domestication process in a neutral fashion. First, maize landraces possess only two basic haplotypes (I and II; Fig. 4c) in contrast to the multiple haplotypes typically observed at neutral loci in maize32. Haplotype I is found in maize from throughout the Americas, but haplotype II is found only in the central Mexican highlands. Second, these two maize haplotypes occur with a patterned distribution in teosinte. The populations of the parviglumis subspecies from the region of maize domestication (southwestern Mexican lowlands20) possess haplotype I plus multiple other haplotypes but not haplotype II. In contrast, both haplotypes I and II occur in the mexicana subspecies from the central Mexican highlands. Third, in maize there is no evidence of recombination between haplotypes I and II, and accordingly linkage disequilibrium (LD) at ba1 in maize is...
very high ($r^2 = 0.96 - 1.0$) whereas in teosinte it is modest ($r^2 = 0.06 - 0.31$).

Although uncertainty remains about the role of $ba1$ during the domestication process, these observations can be explained as follows. Initially, $ba1$ was a target of selection during maize domestication from the *parviglumis* subspecies in the Mexican lowlands and as a consequence only haplotype I entered the maize gene pool. Later after maize spread to the highlands, maize acquired haplotype II from the *mexicana* subspecies via introgression. Thus, haplotype II is found in sympatric populations of maize and the *mexicana* subspecies at high elevations in central Mexico. The high LD observed for $ba1$ in maize is a consequence of the admixture with the *mexicana* subspecies. Finally, because of the admixture with the *mexicana* subspecies, the standard tests of selection are nonsignificant for maize landraces, despite the fact that $ba1$ was under selection during the domestication process. If this model is correct, then future analyses should show that both haplotypes I and II are associated with a more maize-like phenotype as compared with the multiple other haplotypes found only in teosinte.

The evidence suggests that $ba1$ was under selection during maize improvement and encourages further investigation to determine whether $ba1$ corresponds to the QTL 3L implicated in maize domestication19,23. Mutations in $ba1$ produce a plant manifesting strong apical dominance, whereas mutations in $tb1$ cause the opposite effect, namely a severe loss of apical dominance. A balance between the activities of these two genes may have been an important contributor to the domestication and improvement of maize.

Methods

Gene cloning

A full-length LAX cDNA clone was used to screen at medium stringency (−57°C) a cDNA library from RNA of immature tassels (1−3 mm), cloned in HybZap-2.1 vector (Stratagene). Hybridizing clones were recovered according to manufacturer’s instructions (Stratagene). The same probe was used to isolate a 4.5-kb fragment of the genomic region harbouring the $ba1$ gene by screening a BAC library (NSF B73, Clemson University Genomic Institute). The mutant $ba1-ref$ locus was characterized as follows. The coding sequence was amplified by polymerase chain reaction (PCR). Southern analysis on
genomic DNA (RamHII digest) revealed a disruption in the proximal promoter region, whose sequence and location were subsequently determined. A proximal 1.5 kb RamHII fragment was isolated through IP-PCR. The distal RamHII fragment was cloned using the ZAP Express predigested vector kit (Stratagene), following the manufacturer’s instructions. The whole insertion was eventually obtained using the Elongase amplification system (Invitrogen).

Results. Genetic Analysis. Identified at Pioneer Hi-Bred International, as previously described28, via PCR (Supplementary Methods). New material is available for non-commercial research purposes upon acceptance and signing of an appropriate material transfer agreement. The ba1–IL (O31L-At19T-996) point mutation was identified by sequencing the ba1 gene from mutant plants segregating in an ethylmethane-sulfonate-generated M2 family [http://www.maizegdb.org/mip]. We used ClustalW (MacVector 6.5 [K]) for sequence comparisons.

Expression analysis and SEM

Tissue samples were fixed for both in situ sectioning and SEM as previously described21. SEM specimens were viewed on a Quanta 600 microscope. In situ hybridizations were performed as previously reported28. Antisense probes for ba1 were synthesized with T7 polymerase using DIG RNA labelling mixture (Roche). Both HindIII and PstI fragments of the ba1 cDNA (~500 and 300 bp, respectively) were used for in situ hybridizations. ba1 sense probe template was amplified from the same HmIIf1 fragment using a chimeric T7 promoter primer.

Total RNA from pooled seedlings (20 days old) and immature tassels (1.5–2.5 cm) was extracted using standard procedures. RNA samples were further purified (Qiagen RNeasy mini kit) and 2–5 μg were treated with DNase and subsequently reverse-transcribed using the Superscript first-strand synthesis system for RT–PCR, following the manufacturer’s instructions (Invitrogen). RT–PCR reactions were run in a LightCycler (Roche) using Hot Start SYBR green reaction mix (Roche) and analysed using the LightCycler relative quantification software (version 1.0, Roche). Samples for expression level comparison are in the same genetic background. Primer sequences are available on request.

Nucleotide diversity and statistical analysis

Nucleotide diversity in the ba1 locus was determined for three fragments (regions a, b and c) from 16 maize landraces previously described21, 14 inbreds and 14 teosinte individuals (Supplementary Methods and Supplementary Table 1). Nucleotide polymorphism (θ), linkage disequilibrium (r2) and Tajima’s D statistic were calculated using DnaSP version 4.0 (ref. 30). The HKA test was performed using Tripsacum as the preferred outgroup for the divergence estimate, and Zea diploperennis in cases where the Tripsacum sequence could not be obtained. PCR products for Z. diploperennis and Tripsacum bruntii, potentially heterozygous for ba1, were cloned using the PCR 2.1–2.10 TOPO kit (Invitrogen) and at least four clones were sequenced. A joint HKA test across the five maize domestication gene ba1. Proc. Natl Acad. Sci. USA 101, 710–707 (2004).

23. Komatsu, K.

1. Weigel, D. & Ju¨ rgens, G. Stem cells that make stems.

Supplementary Information

accompanies the paper on www.nature.com/nature.

Acknowledgements We thank C. J. Whipple for the pictures in Figs 1m and 3b, c, and for discussions; M. Zanis and S. Jeong for critical reading of the manuscript; M. J. Galli for suggestions on quantitative PCR; E. York for assistance with SEMs at the Scripps Institution of Oceanoigraphy Analytical Facility; and A. Tais, E. Durbin and D. Nakamura for technical help. This research was supported by NSI and NIH grants to R.J.S. and J.F.D. A.G. was also supported by MIUR, Ministeri dell’Istruzione, dell’Università e della Ricerca, Italy.

Competing interests statement The authors declare they have no competing financial interests.

Correspondence and requests for materials should be addressed to R.J.S. (rshmidt@ucsd.edu). Sequences are deposited in GenBank under accession numbers AF683800, AF683002 and AF645947. Other accession numbers are listed in Supplementary Table 1.

The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells

Ryan T. Phan & Riccardo Dalla-Favera

Institute for Cancer Genetics and the Departments of Pathology and Genetics & Development, Columbia University, New York, New York 10032, USA

The human proto-oncogene BCL6 encodes a BTB/POZ-zinc-finger transcriptional repressor that is necessary for germinal-centre formation and is implicated in the pathogenesis of B-cell lymphoma3–5. The precise function of BCL6 in germinal-centre development and lymphomagenesis is unclear because very few direct BCL6 target genes have been identified2–4. Here we report that BCL6 suppresses the expression of the p53 (also known as tp53) tumour suppressor gene and modulates DNA damage-induced apoptotic responses in germinal-centre B cells. BCL6 represses p53 transcription by binding two specific DNA sites within the p53 promoter region and, accordingly, p53 expression is absent in germinal-centre B cells where BCL6 is highly expressed. Suppression of BCL6 expression via specific short interfering RNA leads to increased levels of p53 messenger RNA and protein both under basal conditions and in response to DNA damage. Most notably, constitutive expression of BCL6 protects B cell lines from apoptosis induced by DNA damage. These results suggest that an important function of BCL6 is to allow germinal-centre B cells to tolerate the physiological DNA breaks required for immunoglobulin class switch recombination and somatic hypermutation without inducing a p53-dependent apoptotic response. These findings also imply that deregulated BCL6 expression contributes to lymphomagenesis in part by functional inactivation of p53.