Molecular Evolution of the *teosinte branched* Gene Among Maize and Related Grasses

Lewis Lukens and John Doebley

Department of Plant Biology, University of Minnesota at Minneapolis St. Paul

Several authors have proposed that changes in a small number of regulatory genes may be sufficient for the evolution of novel morphologies. Recent analyses have indicated that *teosinte branched1* (*tb1*), a putative bHLH transcription factor, played such a role during the morphological evolution of maize from its wild ancestor, teosinte. To address whether or not *tb1* played a similar role during the evolution of the Andropogoneae, the tribe to which maize belongs, and to examine the rate and pattern of *tb1* evolution within this tribe, we analyzed *tb1*-like sequences from 23 members of the Andropogoneae and five other grasses. Our analysis revealed that the TB1 protein evolves slowly within three conserved domains but rapidly outside these domains. The nonconserved regions of the gene are characterized by both a high nonsynonymous substitution rate and frequent indels. The ratio of nonsynonymous substitutions per nonsynonymous site (*dS*) to synonymous substitutions per synonymous site (*dN*) was not significantly greater than 1.0, providing no evidence for positive selection. However, the *dS/dN* ratio varied significantly among lineages and was high compared with those of other plant nuclear genes. Variation in the *dS/dN* ratio among the Andropogoneae could be explained by unequal levels of purifying selection among lineages. Consistent with this interpretation, the rate of nonsynonymous substitution differed along several lineages, while the synonymous substitution rate did not differ significantly. Finally, using *tb1*, we examined phylogenetic relationships within the Andropogoneae. The phylogeny suggests that the tribe underwent a rapid radiation during its early history and that the monoecious Andropogoneae are polyphylectic.

Introduction

Molecular genetic analyses have demonstrated that transcription factors often act as switches between discrete developmental programs, encouraging the view that novel morphologies may arise from changes in this class of genes (Goodrich, Carpenter, and Coen 1992; Carroll 1994; Doebley and Lukens 1998). Differences in the expression patterns of transcription factors may alter the timing and location of developmental events and thereby generate morphological variation. Indeed, changes in the level and localization of transcription factor mRNA have been correlated with phenotypic differences within and between species (Doebley, Stec, and Hubbard 1997; Stern 1998; Cubas, Vincent, and Coen 1999). The analysis of DNA sequence variation provides another means of investigating the contribution of transcription factors to morphological evolution. For example, naturally occurring alleles of the MADS box transcription factor, *cauliflower*, possess an excess of intraspecific nonsynonymous substitutions, and this variation is associated with effects on floral morphology (Purugganan and Sudith 1998). Analyses of coding sequence variation can also provide evidence for past episodes of positive selection (e.g., Sutton and Wilkinson 1997) and variation in the rate of sequence evolution (e.g., Yang and Nielsen 1998).

The *teosinte branched1* (*tb1*) gene belongs to the TCP gene family whose members encode putative basic helix-loop-helix DNA-binding proteins that appear to play a role in organ growth. In rice, two members of the TCP family, PCF1 and PCF2, have been shown to act as DNA-binding proteins and to participate in cell cycle regulation (Kosugi and Ohashi 1997). Another TCP gene is *cycloidea* of the snapdragon, which is required for the formation of a bilaterally symmetrical flower (Luo et al. 1996). A naturally occurring hypermethylated allele of *cycloidea* cosegregates with a radially symmetric floral phenotype in Linaria, a relative of the snapdragon (Cubas, Vincent, and Coen 1999). *tb1* itself corresponds to a quantitative trait locus that distinguishes maize from its wild ancestor teosinte in plant architecture, and the maize allele of *tb1* shows evidence of having undergone a selective sweep during maize domestication (Wang et al. 1999). Maize plants introgressed with the teosinte allele of *tb1* have long side branches like teosinte (Doebley, Stec, and Gustus 1995; Lukens and Doebley 1999).

The involvement of TCP gene family members in the morphological evolution of two distantly related flowering plants (maize and Linaria) suggests that these genes may have frequently contributed to morphological evolution. To investigate this possibility, we chose to analyze the evolution of *tb1*-like genes among members of the grass tribe Andropogoneae. This tribe includes maize and a variety of other grasses, such as sorghum and sugarcane. The morphology of the tribe is remarkably diverse, most notably in floral and inflorescence characteristics (Clayton 1987). The tribe likely originated within the past 30 Myr and underwent a rapid radiation (Mason-Gamer, Weil, and Kellogg 1998; Spangler et al. 1999). If *tb1* was involved in the morphological diversification of the tribe, the pattern of sequence evolution in *tb1* may contain evidence for past episodes of positive selection.

To examine whether the pattern of DNA sequence variation in *tb1*-like genes is consistent with a history
of past positive selection, we analyzed 27 *tb1*-like genes from within the tribe Andropogoneae and the subfamily to which it belongs, Panicoideae. We also compared these genes with an additional *tb1*-like sequence from rice (*Oryza sativa*), a more distantly related grass. We addressed several questions. How variable is the *tb1* among these grasses both overall and within specific regions of the gene? Does either the *tb1* gene overall or any specific region within it possess the signature of positive selection as measured by an excess of nonsynonymous substitutions per nonsynonymous site (dN) relative to synonymous substitutions per synonymous site (dS)? Does the dN/dS ratio vary among lineages, suggesting lineage-specific episodes of positive selection? *tb1* evolved in a clocklike fashion at both synonymous and nonsynonymous sites as expected for a strictly neutral model of evolution. Some parts of the coding region have evolved rapidly relative to others, the pattern of evolution is consistent with models that do not invoke positive selection. Similarly, although the dN/dS ratio varies among lineages, our analyses suggest that this is more likely a function of relaxed constraint within some lineages than a function of positive selection.

Materials and Methods

Plant Material

tb1-like sequences were isolated from members of the tribe Andropogoneae of the subfamily Panicoideae of the grass family, Poaceae (table 1). The taxa were selected for broad representation of the Andropogoneae, with the inclusion of rice and several nonandropogonoid members of the panicoid subfamily as outgroups.

Nucleic Acid Isolation, Southern Transfer, and Membrane Hybridization

Genomic DNA extractions, restriction digestions, electrophoresis, and Southern hybridizations were per-
DNAs were digested with size-selected genomic DNA fragments. Genomic maize Southern blot analyses were performed. These blots revealed only one strongly hybridizing band for each of these species when hybridized with the radiolabeled maize tb1 probe (see Results). Based on these results, the genomic DNAs were digested again and electrophoresed (0.8% TAE low-melting-point agarose gel), and fragments the size of the tb1-hybridizing band were excised from the gel. The selected DNA fragments were purified from the agarose plug by agarase digestion (Boehringer) followed by nucleic acid precipitation. The size-selected genomic DNA fragments were cloned into Lambda ZapII or Lambda DashII vectors (Stratagene).

Library Construction

Phage libraries for rice, sorghum, Zea diploperennis, and Tripsacum cundinamarce were constructed from size-selected genomic DNA fragments. Genomic DNAs were digested with EcoRI, HindIII, or SstI, and Southern blot analyses were performed. These blots revealed only one strongly hybridizing band for each of these species when hybridized with the radiolabeled maize tb1 probe (see Results). Based on these results, the genomic DNAs were digested again and electrophoresed (0.8% 1 × TAE low-melting-point agarose gel), and fragments the size of the tb1-hybridizing band were excised from the gel. The selected DNA fragments were purified from the agarose plug by agarase digestion (Boehringer) followed by nucleic acid precipitation. The size-selected genomic DNA fragments were cloned into Lambda ZapII or Lambda DashII vectors (Stratagene).

Between 150,000 and 1,600,000 plaques were screened from each library using the plaque lift procedure as described by Sambrook, Fritsch, and Maniatis (1989). Probes and hybridization conditions were identical to those described above for Southern blotting. Areas of the plate that contained plaques which strongly hybridized to the probe were excised, and the selected phage population was screened two additional times, until a plaque containing a single phage genotype was obtained. For Lambda DashII, lambda DNA was harvested and the insert was subcloned into pBluescript using standard plating, harvesting, and subcloning techniques (Sambrook, Fritsch, and Maniatis 1989). For Lambda ZapII, autoexcision was used to isolate plasmids containing the cloned insert as per the manufacturer's instructions (Stratagene).

Primers, PCR, and Subcloning

PCR with oligonucleotide primers was used to amplify tb1-like genes from genomic DNA of taxa within the tribes Andropogoneae, Arundinelleae, and Paniceae. Primer names and sequences were JD96 (TCCCATCAGTTAACAGCATG), JD73 (GCTCTTGCCAGT-AGTATTGC), and JD75 (GTATCCTCTCCTCC-GTGTGC). JD96 was the forward primer and was used to compare strictly neutral and positive selection models of coding sequence evolution. In the strictly neutral model, the coding sequences were constrained to have evolved with d_{S}/d_{k} values for the sequence overall (Kumar, Tamura, and Nei 1993). Six of the 27 panicoide grasses were excluded from both the MEGA and the WINA analyses, since they differed by ≤0.020 nt per site from another sequence and thus contributed little additional information to the analysis.

The Macintosh version of PAML (Yang 1998) was used to compare strictly neutral and positive selection models of coding sequence evolution. In the strictly neutral model, the coding sequences were constrained to have evolved with d_{S}/d_{k} ratios of 0.0 (nonsynonymous substitutions do not occur) or 1.0 (nonsynonymous substitutions occur at the same rate per nonsynonymous site
as synonymous substitutions per synonymous site). These values reflect the strictly neutral expectation that almost all nonsynonymous mutations are either deleterious or neutral (Kimura 1983). In the positive-selection model, two \(\frac{d_S}{d_S} \) values were constrained to be 1.0 or 0.0, as above, but a third \(\frac{d_S}{d_S} \) statistic was inferred from the data and could take on any value. If the predicted third \(\frac{d_S}{d_S} \) ratio was significantly greater than 1.0, nonsynonymous changes were inferred to occur more frequently than synonymous substitutions at some codons, and there was evidence for positive selection. The difference between a strictly neutral model (\(\frac{d_S}{d_S} = 1.0 \) or 0.0) and a positive-selection model may be determined with a likelihood ratio test (Nielsen and Yang 1998).

PAML was also used to test the strictly neutral prediction that for a given gene phylogeny, the \(\frac{d_S}{d_S} \) ratio would be the same for all lineages. The likelihoods of two models were again compared. In the first model, a single \(\frac{d_S}{d_S} \) ratio is estimated and constrained to fit all lineages. In the second model, \(\frac{d_S}{d_S} \) statistics were estimated for every lineage. A likelihood ratio test was used to determine whether one of these two models explained the data better than the other (Yang and Nielsen 1998).

For both the coding and the lineage analyses, a total of 19 sequences were analyzed using PAML. With the exception of Arundinella, sequences from taxa not classified within the Andropogoneae (Panicum, Danthoniopsis, and Pennisetum) and Andropogoneae sequences that were very similar to other sequences (Zea diploperennis, Capillipedium parviflorum, Chionachne koenigii, Sorghum australiense, and Sorghum bicolor from Ethiopia) were excluded from the analysis. The transition : transversion ratio and the nucleotide frequencies at each codon position were estimated from the data. The maximum-likelihood tree generated by PAUP (see below) was used in all PAML analyses.

The program Codrates was used to detect both synonymous and nonsynonymous substitution rate variation along different lineages (Muse and Gaut 1994). Codrates examines substitution rates in trees with three taxa in which two sequences have diverged more recently than the third or outgroup sequence. The likelihoods of two models were compared. In the first model, the lineages from the most recent common ancestor to the two related taxa were constrained to have the same substitution rate. In the second model, these lineages could have different substitution rates. A likelihood ratio test was used to test which of these models best explained the data. As in the PAML analysis, Arundinella and 18 representative sequences from within the Andropogoneae were included.

Results

Cloning of tb1-like Sequences

As a first step, we wished to establish whether \(\text{tb1} \) existed as a multigene family or as a single-copy gene in the grasses. Southern blot analysis of genomic DNAs from nine members of the grass family using a \(\text{tb1} \) probe revealed one strongly hybridizing fragment in most grasses, and no grass had more than three clearly hybridizing fragments (fig. 1). This result suggests that lambda cloning would likely yield orthologous sequences, especially since our size-selected libraries targeted the most intensely hybridizing fragments for those species with more than one fragment. Similarly, PCR-based isolation of \(\text{tb1} \)-like sequences would be unlikely to yield a complex mixture of paralogous sequences given the low copy number of \(\text{tb1} \) among the grasses. Nevertheless, given the dynamic nature of plant genomes, orthology cannot be assured on the basis of these data.

The sequence for the maize allele of \(\text{tb1} \) had been reported previously (Doebly, Stec, and Hubbard 1997). \(\text{tb1} \)-like sequences were isolated from an additional 27 members of the tribes Oryzeae, Andropogoneae, Arundinelleae, and Paniceae (table 1). \(\text{tb1} \)-like genes were first cloned from \(\text{O. sativa} \) (rice), \(\text{S. bicolor} \), \(\text{Z. diploperennis} \), and \(\text{T. cundinarmerace} \) using lambda libraries. The clones from all four taxa contained a \(\text{tb1} \)-like open reading frame. PCR primers were designed based on regions of high nucleotide similarity among these aligned sequences, and these primers were used to isolate \(\text{tb1} \)-like sequences from 23 additional taxa. Amplification reactions yielded a single product of the expected size in all cases. The lengths of \(\text{tb1} \)-like sequences varied between 1,023 and 1,167 bp, with a mean length of 1,066 bp. Excluding rice and six other sequences (see Materials and Methods), the remaining 21 sequences have a mean identity of 92.8% at the nucleotide level with a range of 84.2%—97.8% identity (table 2).

Despite the high similarity among \(\text{tb1} \)-like sequences, the alignment among all panicoide grasses revealed a remarkably variable structure with numerous indels. We identified a total of 91 indels between 3 and 24 nt in length. Most of these were microsatellite-like repeats of a codon such as (GCC)\(_N\). Among all sequences, five

![Fig. 1.—Southern blot of genomic DNAs from several taxa restricted with HindIII and hybridized with a radiolabeled 32P maize genomic \(\text{tb1} \) clone (NH0.8). The blot shows that \(\text{tb1} \) often hybridizes strongly to only one genomic fragment size. The letters above the lanes refer to the following taxa: A—\(\text{Oryza sativa} \) (rice); B—\(\text{Saccharum officinarum} \) (sugarcane); C—\(\text{Cox aquatica} \) Roxb.; D—\(\text{Cox lacryma-jobi} \); E—\(\text{Sorghum bicolor} \) ssp. bicolor; F—\(\text{Sorghum bicolor} \) ssp. arundinaceum (Desv.) de Wet & Harlan; G—\(\text{Tribus cundinarmerace} \) (L.) L.; H—\(\text{Zea luxurians} \) (Durieu and Ascherson) R. Bird; and I—\(\text{Zea mays} \) ssp. mays.](image-url)
Evolution of teosinte branched 631

Table 2
Mean Identities and \(d_N/d_S \) Ratios for \(tb1 \)-like Genes

<table>
<thead>
<tr>
<th>Taxon (^a)</th>
<th>No. (^b)</th>
<th>Identity (%)</th>
<th>(d_N)</th>
<th>(d_S)</th>
<th>(d_N/d_S)</th>
<th>(d_N/d_S > 1.0^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>210</td>
<td>92.8</td>
<td>0.054</td>
<td>0.157</td>
<td>0.387</td>
<td>4</td>
</tr>
<tr>
<td>(84.2–97.8)</td>
<td></td>
<td>(0.012–0.138)</td>
<td>(0.046–0.386)</td>
<td>(0.128–1.59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cla</td>
<td>20</td>
<td>93.5</td>
<td>0.041</td>
<td>0.171</td>
<td>0.242</td>
<td>0</td>
</tr>
<tr>
<td>(86.8–95.7)</td>
<td></td>
<td>(0.018–0.092)</td>
<td>(0.123–0.358)</td>
<td>(0.128–0.499)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cpa</td>
<td>20</td>
<td>92.0</td>
<td>0.077</td>
<td>0.116</td>
<td>0.783</td>
<td>4</td>
</tr>
<tr>
<td>(84.2–94.4)</td>
<td></td>
<td>(0.053–0.138)</td>
<td>(0.053–0.326)</td>
<td>(0.422–1.59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iaf</td>
<td>20</td>
<td>92.8</td>
<td>0.065</td>
<td>0.118</td>
<td>0.608</td>
<td>1</td>
</tr>
<tr>
<td>(85.6–94.9)</td>
<td></td>
<td>(0.043–0.120)</td>
<td>(0.062–0.314)</td>
<td>(0.329–1.077)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pvi</td>
<td>20</td>
<td>92.2</td>
<td>0.050</td>
<td>0.202</td>
<td>0.250</td>
<td>0</td>
</tr>
<tr>
<td>(89.5–93.6)</td>
<td></td>
<td>(0.035–0.081)</td>
<td>(0.167–0.263)</td>
<td>(0.168–0.438)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note.—Taxa with \(d_N/d_S \) ratios that were within the top or bottom 10% of all values are included in the table. The means and ranges (in parentheses) of values are given for all pairwise comparisons. \(Oryza sativa \) and six other taxa were not included (see Materials and Methods).

\(^a\) Cla = Coix lacryma-jobi; Cpa = Capillipedium parviflorum; Iaf = Ischaemum afrum; Pvi = Panicum virgatum.

\(^b\) Number of pairwise tests whose results are reported in each row.

\(^c\) Number of pairwise comparisons per row for which \(d_N/d_S \) was estimated to be greater than 1.0.

regions had a high level of variation in the number of microsatellite-like repeats. Residues 49–53 and 116–120 had 2–5 and 1–9 alanine repeats, respectively (fig. 2). Residues 211–213 had 1–6 repeats of glycine; residues 304–305 had 1–7 repeats of histidine; and residues 306–309 had 2–7 repeats of serine. Despite the large number of indels, not one indel altered the frame of the coding sequence.

Structure of \(tb1 \)-like Genes

Sequence alignments identified three domains that are highly conserved and lack indels (fig. 2). One of these domains, the TCP domain, is predicted to form a noncanonical basic helix-loop-helix (bHLH) structure and was previously used to define the TCP gene family to which \(tb1 \) belongs (Cubas et al. 1999). Among the panicoid grasses, the basic region of the TCP domain (residues 121–140) which includes a putative nuclear localization signal is more highly conserved than the HLH region (residues 146–179). The second conserved domain, the R domain, also contains several basic arginine and lysine residues that are shared among all panicoids (fig. 2). This domain was previously identified in both monocots and dicots (Cubas et al. 1999). We identified a third conserved domain among the grasses which had significant (E < 0.001) similarity only to \(tb1 \) sequences in a BLAST 2.1 search of GenBank. This domain was not identified in other members of the TCP family (Cubas et al. 1999). This novel domain lies close to the amino terminus of the predicted protein and contains a large number of irregularly spaced proline and serine residues. Like the TCP and R domains, this domain can be readily aligned at the amino acid level between the panicoid grasses and rice (fig. 3), indicating its conservation across the grasses. We have termed this novel domain the SP domain because of the high frequency of these two amino acids.

![Fig. 2.—Majority-rule consensus of the predicted \(tb1 \) amino acid sequences of 27 panicoid grasses. Identical amino acids are in black boxes. Sites which share >90% identity are in gray boxes. Residues that are shared by fewer than 50% of all taxa are underlined, and amino acids that are similar in charge or hydrophobicity are represented in bold. The novel SP domain (see text) and the previously identified TCP and R domains are identified.](image)
tbl Phylogeny

We used likelihood and parsimony methods to construct the *tbl* gene phylogeny. To reduce inappropriate comparisons among nonhomologous nucleotide positions, regions of the gene that could not be unambiguously aligned were removed. The final data set had a total of 1,122 bp of aligned coding sequence including gaps. Of the 1,122 bp, 430 sites were variable and 211 were phylogenetically informative. Maximum-parsimony analysis resulted in three equally parsimonious trees on a single island of length 723 (consistency index [CI] = 0.76, retention index [RI] = 0.66). Heuristic searches using maximum-likelihood criteria described above generated one tree (ln L = 5,595) for each of 10 independent replicates with random input order of the taxa (fig. 4). More complex models with transition/transversion (ts/tv) frequencies estimated from the data (estimated ts/tv = 1.05) and with rate variation estimated among nucleotide sites (estimated gamma shape parameter alpha = 0.67) resulted in the same topology.

Parsimony and maximum-likelihood analyses produced different topologies; however, the areas of disagreement lacked statistical support. For example, in all parsimony trees, sequences from the genus *Sorghum* were polyphyletic, whereas *Sorghum* was monophyletic in the maximum-likelihood analysis. However, the maximum-likelihood phylogeny required only three more steps (726 vs. 723) than does the maximum parsimony tree, a difference that was not statistically significant (Templeton test; *P* = 0.48). Similarly, the most parsimonious phylogenies had a log likelihood of −5,600 which was not significantly different from the maximum-likelihood tree (ln L = −5,595) in a comparison using the Kishino-Hasegawa test (*P* = 0.76). The parsimony- and maximum-likelihood–generated trees were not significantly different despite different topologies because of weak support for internal nodes. All inferred phylogenies had short, internal branches with low bootstrap support.

Despite the poor resolution of the internal branches, several clades were well supported. The monophyly of the Andropogoneae was supported with 85% bootstrap support, as did Chionachne and Coelorachis, *S. australiense* and *S. bicolor* sequences, and Bothriochloa and Capillipedium. There was somewhat weaker support for the following groups: (1) a Chionachne/Coelorachis and *Zea/Tripsacum* clade (71%), (2) an *Andropogon/Heteropogon* clade (85%), and (3) a *S. nitidum/S. bicolor* clade (74%).

The relationship of *Coix* to other Andropogoneae has been a question of some interest among grass systematists (Kellogg and Birchler 1993; Spangler et al. 1999). *Coix*, which is monoecious, has been placed with the other monoecious Andropogoneae (*Zea*, *Tripsacum*, and *Chionachne*) in a separate tribe (Maydeae) distinct from the Andropogoneae (Watson and Dallwitz 1992).
Evolution of teosinte branched

Fig. 4.—Maximum-likelihood phylogeny of tb1-like sequences. Branch lengths >0.005 substitutions per site are indicated above each branch. Bootstrap values are shown below a node if the node is present in more than 50% of the bootstrap replicate analyses. Sorghum bicolorU refers to the Ugandan isolate of S. bicolor. Sorghum bicolorE refers to the Ethiopian isolate.

In our phylogeny, Coix was sister to Ischaemum and well separated from the other monoecious taxa. Thus, our tb1-like data did not support a placement of Coix with the other monoecious species in the Maydeae. Indeed, trees in which the monoecious genera (including Coix) were forced to be monophyletic were 25 steps longer and statistically worse (Kishino-Hasegawa—P < 0.0001; Templeton—P < 0.0001) than the most parsimonious tree.

Testing for Positive Selection

Regulatory loci have been hypothesized to evolve quickly and acquire novel functions in their variable domains as a result of positive selection, while their conserved domains maintain basic functions such as DNA binding (Purugganan and Wessler 1994; Purugganan 1998). To detect the signature of such positive selection in tb1, a sliding-window analysis of mean pairwise d_N/d_S ratios was performed. Different regions of tb1 exhibited greatly different substitution patterns, with the lowest ratios in the SP domain, the 5' region of the TCP domain, and the R domain (fig. 5). The overall lowest mean d_S/d_S value was in the SP domain with an inferred ratio for nucleotides 1–60 of 4.13 × 10^{-4}. In contrast, the highest mean d_S/d_S ratios were observed in the regions immediately 5' (1.24) and 3' of the TCP domain (0.994).

A d_S/d_S value that is significantly greater than 1.0 is considered strong evidence for positive selection. Using the method of Nielsen and Yang (1998) to examine the entire tb1 sequence, we tested for evidence of positive selection for nonsynonymous substitutions at some codons while allowing other codons to be invariant or neutral. This analysis placed codons into one of three categories: (1) fully neutral ($d_\text{N}/d_\text{S} = 1$); (2) invariant ($d_\text{N}/d_\text{S} = 0$); or (3) slightly deleterious, those with nonsynonymous substitutions occurring less frequently (per site) than synonymous substitutions ($d_\text{S}/d_\text{S} = 0.18$). This analysis provided no evidence of codons with d_S/d_S ratios greater than 1.0 and suggested that there was not a subset of codons within tb1 under positive selection. To bias our analysis of positive selection toward quickly
evolving regions, we next analyzed only the most variable region (amino acids 83–119) of *tb1*. For some codons of this region, the nonsynonymous substitution rate per nonsynonymous site exceeded the synonymous substitution rate per synonymous site. Codons in this analysis were classified as either fully neutral (\(d_{N}/d_{S} = 1\)), deleterious (\(d_{N}/d_{S} = 0\)), or potentially under positive selection, with nonsynonymous substitutions occurring more frequently per nonsynonymous site than synonymous substitutions per synonymous site (\(d_{N}/d_{S} = 4.18\)). However, the log likelihood of this positive selection model (\(\ln L = -402.7\)) did not significantly differ from the log likelihood of the simpler, strictly neutral model in which the \(d_{N}/d_{S}\) ratio was constrained to be either 1.0 or 0.0 (\(\ln L = -404.8; P < 0.12\)).

We wished to test whether \(d_{N}/d_{S}\) varied among lineages as expected if selection intensities on *tb1* differed in some lineages relative to others. For the 21 species examined in the sliding-window analysis, the mean pairwise \(d_{N}/d_{S}\) ratio was 0.39 (table 2). However, some species appear to deviate greatly from this mean. *Capillipedium parviflorum* and *Ischaemum afrum* had high \(d_{N}/d_{S}\) ratios relative to the overall mean, while *Coix lacryma-jobi* and *Panicum virgatum* had lower ratios than other species (table 2). The significance of lineage-specific heterogeneity in \(d_{N}/d_{S}\) was tested by comparing the likelihood of a model in which \(d_{N}/d_{S}\) was held constant among all lineages with that of a model in which \(d_{N}/d_{S}\) was allowed to vary among lineages (Yang and Nielsen 1998). The likelihood of these two models differed significantly (\(P < 0.016\)) with the model allowing the ratio to vary among lineages (\(\ln L = -3.797\)) being favored over the model in which the ratio was constrained (\(\ln L = -3.824\)). Although \(d_{N}/d_{S}\) ratios varied across lineages from 0 to 0.989 (with 4 of 35 lineages having no predicted synonymous substitutions), the estimated ratio of \(d_{N}/d_{S}\) for each lineage was still less than 1.0. Thus, the data were consistent with variation in the degree of selective constraint, and there is no need to invoke positive selection.

Rate Variation Between Lineages

To identify specific lineages for which either nonsynonymous or nonsynonymous substitution rates were significantly accelerated or decelerated, the program Codemacro was used (Muse and Gaut 1994). Substitution rate heterogeneity for nonsynonymous sites was far more prevalent than that for synonymous sites (fig. 6). Nonsynonymous substitution rates on lineages leading to *Zea*, *Capillipedium*, and *Ischaemum* appeared to be strongly accelerated. In contrast, *S. bicolor* and *S. nitidum* had slower rates of nonsynonymous substitution relative to other taxa. In this analysis, variation in the synonymous substitution rate was rare, and only *Z. mays* had significant synonymous substitution rate variation for 2 of 17 comparisons. For all comparisons, *Arundinella hirta* was used as the outgroup. Using different outgroups to compare rate variation, we found that the overall pattern of rate variation was maintained but that the significance of rate heterogeneity for individual comparisons often changed (data not shown). The fact that synonymous substitution rates did not differ greatly and that nonsynonymous rate variation was common suggests that *tb1*-like genes may be under different levels of functional constraint in different lineages.

Discussion

tb1 in the Grasses

tb1 belongs to the TCP family of putative transcriptional regulators. In both monocots and dicots, the TCP genes form a multigene family that includes two distinct groups: the *tb1-cyc*–like genes and the *pcf*–like genes. One concern in evolutionary analysis of genes belonging to such a multigene family is that one cannot be certain of the orthology of sequences. This can be a particular problem when performing PCR with conserved primers that may amplify nonorthologous gene family members. Two lines of evidence suggest that this is not an overriding problem with the *tb1*-like sequences that we isolated. First, Southern blot analysis of grass

Fig. 5.—Sliding-window analysis of the estimated ratio of the nonsynonymous substitution rate (\(d_{N}\)) to the synonymous substitution rate (\(d_{S}\)) along the *tb1* coding sequence. The mean \(d_{N}/d_{S}\) ratio for all pairwise sequence comparisons at each window is depicted as a square on the graph. The \(d_{N}/d_{S}\) estimate was computed for windows of 60 nt with 3-nt intervals between each pair of windows. Conserved domains are indicated below the graph.
genomic DNAs usually revealed only a single strongly hybridizing restriction fragment and no more than three hybridizing fragments (fig. 1). Second, the \textit{tb1}-like gene phylogeny for the Andropogoneae was similar in several respects to phylogenies reported in previous studies of this tribe of grasses (Kellogg and Birchler 1993; Spangler et al. 1999). Nevertheless, strict orthology cannot be assured.

\textbf{Structural Domains of \textit{tb1}}

The TCP gene family was named after its three founding members: \textit{tb1}, \textit{cyc}, and \textit{pcf} (Cubas et al. 1999). These genes share the TCP domain, which forms a putative basic helix-loop-helix structure. The TCP domain of the rice PCF transcription factor has been demonstrated to function in DNA binding (Kosugi and Ohashi 1997). The basic region of the domain contains a putative bipartite nuclear localization signal. Additionally, some TCP family members, including \textit{tb1} and \textit{cyc}, share a second domain, termed the R domain, which has no known function but is predicted to form a hydrophilic alpha helix (Cubas et al. 1999).

We identified within the \textit{tb1}-like genes among the grasses a third conserved region that we have named the SP domain. This new domain is near the amino terminus of the protein and is 29 amino acids in length. These 29 amino acids include five serine, five proline, and three glutamine residues. Eukaryotic transcription factors often have distinct activation domains that are characterized by multiple serine/threonine, proline, or glutamine residues (Seipel, Georgiev, and Schaffner 1992; Cous- try, Maity, and de Crombrugghe 1995; Dörfler and Busslinger 1996). Thus, it is possible that the conserved SP region represents an activation domain. Functional analyses are necessary to test this putative function. For example, the fusion of the SP sequence with a DNA-binding domain such as the GAL4 DNA binding-domain from yeast should induce transcription of a reporter gene (such as β-galactosidase) flanked by the GAL4 upstream activating sequence.

The conservative nature of the TCP, R, and SP domains is apparent from several lines of evidence. First, comparison of the rice and maize proteins identified these three domains as highly conserved (fig. 3). Second, among the Andropogoneae, these same three domains stood out as conserved relative to the rest of the protein (fig. 2). Third, the sliding-window analysis showed that these three domains had the lowest \(d_{s}/d_{s}\) ratios (fig. 5). While each of these three domains is conserved relative to the rest of the protein, the HLH region of the TCP domain is somewhat less conserved than the basic region (figs. 2 and 5). The HLH region is likely involved in protein-protein interactions (Cubas et al. 1999), and heterogeneity within this region may indicate that \textit{tb1} has acquired novel binding partners within different lineages. Such a pattern of substitution is similar to that found among homeobox proteins for which domains involved in protein:protein interaction are less conserved than DNA-binding domains (Sharkey, Graba, and Scott 1997).

Outside of their conserved domains, our \textit{tb1} sequences have evolved unusually rapidly. \textit{tb1} sequences had a greater number of indels and a higher \(d_{s}/d_{s}\) ratio relative to other plant genes (Wolfe, Sharp, and Li 1989; Purugganan 1998). The mean \(d_{s}/d_{s}\) ratio for \textit{tb1} was also greater than that of the duplicated \textit{adh1} and \textit{adh2} genes. Within the grasses, the maximum \(d_{s}/d_{s}\) value of the \textit{adh} phylogeny was 0.36 for a single branch (Gaut et al. 1999). An additional level of structural heterogeneity among \textit{tb1} sequences is caused by indels which are present even between taxa that have very few nucleotide differences. The \textit{Z. mays} and \textit{S. bicolor} sequences, for example, share 93.9% nucleotide identity but differ by 12 indels. It has been suggested that indels are important for creating novel variation within the gamete recognition protein bindin (Metz and Palumbi 1996).

<table>
<thead>
<tr>
<th>Zma</th>
<th>Cae</th>
<th>Pdi</th>
<th>Age</th>
<th>Hco</th>
<th>Cdl</th>
<th>Cpa</th>
<th>Sof</th>
<th>Snu</th>
<th>Sni</th>
<th>Sbi</th>
<th>Sma</th>
<th>Etr</th>
<th>Cso</th>
<th>Cha</th>
<th>Cfa</th>
<th>Inf</th>
<th>Tcu</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
<tr>
<td>Zma</td>
<td>---</td>
<td>Zma**</td>
<td>---</td>
</tr>
<tr>
<td>Cae</td>
<td>---</td>
<td>---</td>
<td>Cae*</td>
<td>---</td>
</tr>
<tr>
<td>Age</td>
<td>---</td>
</tr>
<tr>
<td>Hco</td>
<td>---</td>
</tr>
<tr>
<td>Cdl</td>
<td>---</td>
<td>---</td>
<td>Cpa**</td>
<td>---</td>
</tr>
<tr>
<td>Cpa</td>
<td>---</td>
</tr>
<tr>
<td>Sof</td>
<td>---</td>
</tr>
<tr>
<td>Snu</td>
<td>---</td>
</tr>
<tr>
<td>Sni</td>
<td>---</td>
</tr>
<tr>
<td>Sbi</td>
<td>---</td>
</tr>
<tr>
<td>Sma</td>
<td>Zma*</td>
<td>---</td>
</tr>
<tr>
<td>Etr</td>
<td>---</td>
</tr>
<tr>
<td>Cso</td>
<td>---</td>
</tr>
<tr>
<td>Cha</td>
<td>---</td>
</tr>
<tr>
<td>Cfa</td>
<td>---</td>
</tr>
<tr>
<td>Inf</td>
<td>---</td>
</tr>
<tr>
<td>Tcu</td>
<td>---</td>
</tr>
</tbody>
</table>

\textbf{Fig. 6.}—Results of 306 relative-rate tests for synonymous and nonsynonymous substitutions. The upper triangle shows the results of nonsynonymous substitution rate tests, and the lower triangle shows the results of synonymous substitution rate tests. Entries in the figure refer to those pairwise comparisons in which rate equality was rejected. The name of the sequence which was inferred to have evolved more quickly in each pairwise comparison is given as the first letter of the genus name and the first two letters of the species name. The Ugandan \textit{Sorghum bicolor} sequence was used. \textit{Arundinella hirta} was used as the outgroup sequence. One asterisk indicates rejection of rate equality at the 0.05 level; two asterisks indicate rejection at the 0.01 level.
The \(t\!b\!l \)-like Gene Phylogeny

The rapid evolution of \(t\!b\!l \) gives these sequences utility in testing phylogenetic hypotheses for the closely related taxa within the Andropogoneae. Although the tribe contains cosmopolitan genera such as Heteropogon and Andropogon, as well as crop plants such as maize, sorghum, and sugarcane, the relationships among taxa within the tribe have been difficult to determine. Early taxonomic studies and more recent analyses have suggested that the Andropogoneae underwent a rapid radiation (Celatier 1956; Spangler et al. 1999). Our phylogeny for \(t\!b\!l \) was consistent with this hypothesis, since most internal branches at the base of the Andropogoneae were short (fig. 4).

Several clades within the \(t\!b\!l \) phylogeny had reasonable bootstrap support and were consistent with morphological or previous phylogenetic analyses. The monophyly of the Andropogoneae with the Arundinelloae as its sister tribe agreed with several previous studies (Kellogg and Bircher 1993; Spangler et al. 1999). Tripsacum appears to be sister to Zea, as recognized over 60 years ago (Mangelsdorf and Reeves 1939). Coelorachis and Chionachne are sister to the Zea/Tripsacum clade, which seems reasonable given that Coelorachis has been proposed to be an intermediate between the monoecious Andropogoneae and other members of the tribe (Reeves and Mangelsdorf 1935). The monophyly of the Australian species \(S. \) \(m \) \(a \) \(t \) \(a \) \(r \) \(a \) \(k \) \(e \) \(n \) \(s \) and \(S. \) \(a \) \(u \) \(s \) \(t \) \(r \) \(a \) \(n \) \(s \) \(e \) \(n \) are the only sequence data that have been published to date from a large number of taxa within the Andropogoneae. Spangler et al.’s (1999) \(n\!d\!h\!F \) phylogeny and our \(t\!b\!l \) phylogeny both support many of the same relationships (see above). However, several specific areas of difference are noteworthy. In the \(n\!d\!h\!F \) phylogeny, the position of Coelorachis was unresolved; while in the \(t\!b\!l \) phylogeny, Coelorachis was strongly supported as the sister genus to Chionachne. Second, Elionurus was weakly supported as sister to the Trip-
ntral expectations. We consider two possible interpretations of these results. First, positive selection has indeed occurred, but our test simply lacked sufficient power to detect it. This interpretation cannot be excluded. Second, the TB1 protein has not experienced significant positive selection during the history of these grasses. If the latter is the case, this need not imply that the gene has not been affected by positive selection. Selection could act on $5'$ regulatory sequences or other features that change the pattern/level of ttl expression. Indeed, in both of the two cases in which ttl-like genes have been implicated in the evolution of new morphologies, changes in gene expression were implicated (Cubas, Vincent, and Coen 1999; Wang et al. 1999).

Rate Heterogeneity Among Lineages

We wished to test whether ttl had evolved in a clocklike fashion along different lineages within the Andropogoneae, as expected under strict neutrality. Among the 153 tests of synonymous rate variation, only two were significant at the 5% level. One would expect more than seven significant tests by chance alone; thus, these results indicate that the synonymous rate does not vary among these grasses. Among the 153 tests for nonsynonymous rate variation, 30 were significant at either the 1% or the 5% level, indicating that there is extensive variation in the nonsynonymous rate. Examination of these tests shows that three lineages including C. purpureum, I. afrum, and S. nitidum have accelerated rates, while S. bicolor and S. nitidum have slower nonsynonymous substitution rates. It is of interest that substitution rate heterogeneity was detected for both synonymous and nonsynonymous sites in Z. mays. This result concurs with an earlier analysis of Adh1, for which Zea has an accelerated substitution rate relative to other grasses (Gaut and Clegg 1993).

What is the cause of the extensive variation in nonsynonymous rates among lineages? The tests of positive selection discussed above were all negative, and thus there is no evidence that this rate variation resulted from past episodes of positive selection. Excluding positive selection, there are at least two other possible explanations. First, there may have been a relaxation of constraint along some lineages, especially outside of the three conserved domains. Second, in small populations, nonsynonymous substitution rates may be accelerated due to the fixation of slightly deleterious alleles under random genetic drift (Ohta 1992, 1993). Unfortunately, the history of these grasses is too poorly known to make credible estimates of whether some have had historically smaller population sizes than others. One could test the hypothesis that population size has influenced the nucleotide substitution rate along these lineages, since such population size variation should alter the rates for all genes within a lineage in a similar way (Muse and Gaut 1997).

Acknowledgments

We thank Dr. Russ Spangler for kindly providing the ndhF data for analysis, Dr. Elizabeth Kellogg and members of the Doebley lab for providing genomic DNA samples, and Drs. Brandon Gaut, Elizabeth Kellogg, Georgiana May, and Michael Purugganan and two anonymous reviewers for comments on the manuscript. This work was supported by an NSF doctoral dissertation fellowship and EPA STAR fellowship to L.L. and an NSF grant to J.D.

LITERATURE CITED

HUGHES, A., T. OTA, and M. NEI. 1990. Positive Darwinian selection promotes charge profile diversity in the antigen-

Elizabeth Kellogg, reviewing editor

Accepted December 20, 2000